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a b s t r a c t

This paper presents a comparative study between wavelet and curvelet transform for breast cancer

diagnosis in digital mammogram. Using multiresolution analysis, mammogram images are decomposed

into different resolution levels, which are sensitive to different frequency bands. A set of the biggest

coefficients from each decomposition level is extracted. Then a supervised classifier system based on

Euclidian distance is constructed. The performance of the classifier is evaluated using a 2�5-fold cross

validation followed by a statistical analysis. The experimental results suggest that curvelet transform

outperforms wavelet transform and the difference is statistically significant.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Breast cancer is one of the most dangerous types of cancer
among women all over the world. It happens to over 11% women
during their life time. The world health organization’s Interna-
tional Agency for Research on Cancer (IARC) estimates that more
than a million cases of breast cancer will occur worldwide
annually and more than 400,000 women die each year from this
disease [1]. Early detection of breast cancer is essential in
reducing life fatalities [2]. Digital mammography has been used
in attempts to reduce the negative biopsy ratio and the cost to
society by improving feature analysis and refining criteria
for recommendation for biopsy. Digital mammography is a
convenient and easy tool in classifying tumors and many
applications in the literature proved its effective use in breast
cancer diagnosis [3].

Image features extraction is an important step in image
processing techniques. The features of digital images can be
extracted directly from the spatial data or from a different space.
Using a different space by special data transforms such wavelet or
curvelet can be helpful to extract specific characteristics from
a data. Detecting the features of image texture is a difficult
process since these features are mostly variable and scale
dependent [4–7].
ll rights reserved.
Wavelet provides an efficient representation for images. In
recent years, several schemes for mammogram analysis using
wavelet were introduced. Liu et al. [8] proved that the use of
multiresolution analysis of mammograms improves the effective-
ness of any diagnosis system based on wavelets coefficients. In
their mammogram analysis study, they used a set of statistical
features with binary tree classifier. Ferreira and Borges [7]
indicated that, the biggest wavelet coefficients in the low
frequency of wavelet transform could be used as a signature
vector for the corresponding mammogram. The obtained results
showed that the biggest wavelet coefficients gave good classifica-
tion accuracy rates. Rashed et al. [4] used a multiresolution
mammogram analysis in multilevel decomposition to extract a
fraction of the biggest coefficients. They used Daubechies-4, -8
and -16 wavelets with four level decompositions. They showed
that the biggest coefficients in multilevel decomposition have a
remarkably high efficiency.

Angelini et al. [9] presented a study to classify between two
classes, masses versus non-masses. In order to find the optimal
solution to this two class classification problem, three image
representations were tested; a pixel based, discrete wavelet
transform (DWT) representation and an overcomplete wavelet
transform (OWT) representation. Support vector machine (SVM)
was used as a classifier. The best possible results were achieved
by DWT and OWT, both sophisticated image representations.
Mousa et al. [6] proposed a system based on wavelet analysis and
used the adaptive neuro-fuzzy inference system (ANFIS) for
building the classifier to distinguish normal from abnormal and
to determine whether the type of abnormality is mass or
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microcalcification. The features were extracted by summing a
predefined number of energy values together. The given results
showed a successful classification rate.

Sakka et al. [10] carried out a comparative study on some
wavelet functions which are widely used in microcalcification
detection and feature extraction. The detection of microcalcifica-
tion was achieved by decomposing the mammograms into
different frequency sub-bands, and reconstructing the mammo-
gram from the sub-bands containing only high frequencies, due to
the fact that microcalcification correspond to high frequencies in
the frequency domain of the image. Experimental results showed
that the (sym8) wavelet achieved the best detecting result.

Yang et al. [11] did a comparative study for microcalcification
detection in digital mammogram using wavelet. They decom-
posed the image into different resolution levels which are
sensitive to different frequency bands. Several normal wavelet
family functions were studied comparably, and for each wavelet
function, different resolution levels were explored for detecting
the microcalcification. Experimental results showed that the
Daubechies wavelet with the 4th level decomposition achieved
the best detecting result.

Moayedi et al. [12] presented a study of contourlet-based
mammography mass classification using SVM. In their study, a set
of statistical properties of contourlet coefficients from 4 decom-
position levels, co-occurrence matrix features and geometrical
features were used as feature vector of region of interest (ROI).
Genetic algorithm was used for feature selection based on neural
network pattern classification. They conclude that the contourlet
offers an improvement of the classification process.

Curvelet efficiently represents discontinuities along edges or
curves in images or objects [13]. Some studies using curvelet
transform in image processing have been carried out. Ali et al. [14]
presented a curvelet approach for the fusion of magnetic
resonance (MR) and computed tomography (CT) images. They
found that curvelet transform achieved good results in their
fusion. Bind and Tahan [15] presented a method for object
detection of speckle image based on curvelet transform. They
constructed a segmentation method that provides a sparse
expansion for typical images having smooth contours. Murtagh
and Stark [16] used second, third, and fourth order moment of
Multiresolution transform (wavelet and curvelet) coefficients as
features, and K-nearest neighbors supervised classifier for image
classification process.

Curvelet has also showed its efficiency for mammogram
analysis. Eltoukhy et al. [17] presented a study of mammogram
classification based on curvelet transform. The feature extraction
depends on a percentage of the biggest coefficients from each
decomposition level.

This paper introduces a comparative study between wavelet
and curvelet transforms. The motivation is to determine through
experimental work, which method is more efficient for represen-
tation, analysis and classification of breast cancer in digital
mammograms.

In this study, each of mammogram images is decomposed
using wavelet and curvelet separately. Then a set of the
corresponding coefficients of each mammogram are extracted.
Finally, a nearest neighbor classifier based on Euclidian distance is
used to classify the mammogram images. The proposed system
consists of two main steps: the first is to differentiate between
normal tissue, benign and malignant tumors. The second step is to
classify different types of abnormalities based on geometrical
properties such as microcalcification clusters, circumscribed
mass, spiculated mass, ill-defined mass, architectural distortion
and asymmetry.

The remaining of this paper is organized as it follows. Section 2
gives a brief introduction to wavelet and curvelet transform.
Section 3 discusses the experimental work. Section 4 presents the
statistical analysis method. Results and discussions are intro-
duced in Section 5, while Section 6 contains the conclusion of the
work.
2. Preliminaries

2.1. Wavelet transform

2.1.1. Multiresolution and one-dimensional wavelet representation

The multiresolution approximation of one-dimensional signal

f ðxÞAL2
ðRÞ at a resolution 2j is defined as the orthogonal

projection of a signal on subspace V2j of L2
ðRÞ. The approximation

A2jþ 1 f ðxÞ at resolution 2jþ1 contains more information than the

approximation A2j f ðxÞ at resolution 2j. The details signal of f(x) at

resolution 2j denoted by D2j f ðxÞ. The details can be defined as the

difference between A2jþ 1 f ðxÞ and A2j f ðxÞ. D2j f ðxÞ is equivalent to

the orthogonal projection of f(x) on the complement O2j of vector

space V2j in V2jþ 1 . According to the theory of multiresolution

signal decomposition [18], there exists a unique scaling function

jðxÞAL2
ðRÞ and a unique corresponding wavelet function

cðxÞAL2
ðRÞ, where j2j ðxÞ ¼ 2jjð2jxÞ and c2j ðxÞ ¼ 2jcð2jxÞ, such

that f2�j=2j2j ðx�2�jkÞgkAZ and f2�j=2c2j ðx�2�jkÞgkAZ are orthogo-

nal bases of O2j and V2j , respectively. The approximation and

detail signals of the original signal f(x) at resolution 2j are
completely characterized by the sequence of inner products of f(x)

with j2j and c2j as follows:

fA2i f ðkÞgkAZ ¼ f/f ðoÞ;j2j ðo�2�jkÞSgkAZ ð1Þ

fD2i f ðkÞgkAZ ¼ f/f ðoÞ;c2j ðo�2�jkÞSgkAZ ð2Þ

Let H be a low-pass filter and G be a high-pass filter, where the

impulse response of the filter H is hðkÞ ¼/j�1ðxÞ;jðx�kÞS, and

the impulse response of the filter G is gðxÞ ¼/c�1ðxÞ;cðx�kÞS.

Define ~H with impulse response ~hðkÞ ¼ hð�kÞ to be the mirror

filter of H, and ~G with impulse response ~gðkÞ ¼ hð�kÞ to be the
mirror filter of G. The multiresolution representation of f(x) at any
resolution 2j can be implemented by a pyramidal algorithm as
shown in Fig. 1

A2j�1 f ðxÞ ¼
X1

k ¼ �1

~hð2x�kÞA2j f ðkÞ where j¼ 0;�1;�2; . . . ð3Þ

D2j�1 f ðxÞ ¼
X1

k ¼ �1

~gð2x�kÞA2j f ðkÞ where j¼ 0;�1;�2; . . . ð4Þ

2.1.2. Two-dimensional wavelet representation

The wavelet model can be extended to two-dimensional

signals by separable multi-resolution approximation of L2
ðR2
Þ

with scaling function jðx; yÞ ¼jðxÞjðyÞ. And cðxÞ is the one-
dimensional wavelet function associated with jðxÞ. There are

three associated wavelet functions c1
ðx; yÞ ¼jðxÞcðyÞ, c2

ðx; yÞ ¼

cðxÞjðyÞ and c3
ðx; yÞ ¼cðxÞcðyÞ. With this formulation, the

wavelet decomposition of a two-dimensional signal can be
computed with a separable extension of the one-dimensional
decomposition algorithm as shown in Fig. 2.

Fig. 3 illustrates the decomposition of the image A2jþ 1 f into

A2j f , Dh
2j f , Dv

2j f , and DD
2j f in the frequency domain. The images A2j f ,

Dh
2j f , Dv

2j f , and Dd
2j f corresponding to the lowest frequencies, the

vertical high frequencies (horizontal edges), the horizontal high
frequencies (vertical edges) and the high frequencies in both
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Fig. 1. A wavelet decomposition of a signal A2jþ 1 f .
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Fig. 2. A wavelet decomposition of an image, the outputs are approximation and details.
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Fig. 3. Wavelet multiresolution decomposition for three levels.
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directions (diagonal), respectively. i.e., the image A2jþ 1 f ¼ A2j f þ

Dh
2j f þDv

2j f þDd
2j f . This set of images is called an orthogonal

wavelet representation in two dimensions [18]. The image A2j f

is the coarse approximation at the resolution 2j and the images

Dh
2j f , Dv

2j f and Dd
2j f give the detail signals for different orientations

and resolutions. If the original image has N pixels, then each of the

images Dh
2j f , Dv

2j f and Dd
2j f will have 2jN pixels (jo0), so that the

total number of pixels in this new representation is equal to the
number of pixels of the original image, to keep the volume of data
maintained. This process can be summarized as, wavelet
decompose an image into orthogonal sub-bands with low–low
(LL), low–high (LH), high–low (HL), and high–high (HH)
components which correspond to approximation, horizontal,
vertical and diagonal, respectively. The LL sub-band is further
decomposed into another four sub-bands low–low–low–low
(LLLL) component, which represents the image approximation at
this level, and then it is decomposed once again and so on [19].
Fig. 4. Curvelet basic digital tiling. The shaded region represents one such typical

wedge.
2.2. Curvelet transform

The discrete curvelet transform is a new image representation
approach. It was proposed by Candes and Donoh [20], from the
idea of representing a curve as superposition of functions of
various length and width obeying the curvelet scaling law
width� length2 [20]. Fig. 4 presents the curvelet analysis method.
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The work is done throughout in two dimensions, i.e., R2 with x as
spatial variable, o as frequency domain variable, r and y as polar
coordinates in the frequency domain. A pair of windows W(r) and V(t)
are defined as the radial window and angular window, respectively.
These are smooth, nonnegative and real-valued, with W taking
positive real arguments and is supported on rAð1=2;2Þ and V taking
real arguments and is supported on tA ½�1;1�. These windows will
always obey the admissibility conditions [21]

X1
j ¼ �1

W2ð2jrÞ ¼ 1; rA
3

4
;
3

2

� �
ð5Þ

X1
l ¼ �1

V2ðt�lÞ ¼ 1; tA
�1

2
;
1

2

� �
ð6Þ

For each jZ j0, a frequency window Uj is defined in the Fourier
domain by

Ujðr; yÞ ¼ 2�
3
4jWð2�jrÞV

2bj=2cy
2p

 !
ð7Þ

where bj/2c is the integer part of j/2. Thus the support of Uj is a
polar wedge defined by the support of W and V, applied with
scale-dependent window widths in radial and angular directions.
The symmetrized version of (7), namely, Ujðr;yÞþUjðr;yþpÞ is
used to obtain real-valued curvelet.

The waveform jjðxÞ is defined by means of its Fourier
transform ĵ jðoÞ ¼UjðoÞ. Let Ujðo1;o2Þ be the window defined
in the polar coordinate system by (7). jj is the mother curvelet in
the sense that all curvelets at scale 2� j are obtained by rotations
and translations of jj. Rotation angles yl ¼ 2p2�bj=2cl are intro-
duced, with l=0,1,y such that 0pyp2p, (the spacing between
consecutive angles is scale dependent), sequence of translation
parameters k¼ ðk1; k2ÞAZ2. The curvelets are defined as a
function of x¼ ðx1; x2Þ at scale 2� j, orientation angle yl and
position xðj;lÞk ¼ R�1

yl
ðk1 � 2

�j; k2 � 2
�j=2
Þ by

jj;l;kðxÞ ¼jjðRyl
ðx�xðj;lÞk ÞÞ ð8Þ

where Ry is the rotation by y radians and R�1
y is its inverse,

Ry ¼
cosy siny
�siny cosy

� �
; R�1

y ¼ RT
y ¼ R�y:

A curvelet coefficient is the inner product of an element
f AL2ðR2

Þ and a curvelet jj;l;k,

cðj; l; kÞ : ¼

Z
R2

f ðxÞjj;l;kðxÞ dx ð9Þ

where R denotes the real line. Curvelet transform obeys an
anisotropy scaling relation, length � 2�j=2, width¼ 2�j, such that
width� length2. Fast digital curvelet transform can be implemen-
ted via two methods, using unequispaced FFTs or using wrapping
[21]. In this paper, the method of unequispaced FFTs is used.

Curvelet has indeed more advantages in geometric features
than wavelet making it superior over the later, like in the
following cases [21]:
Table 1
1.
 Optimally sparse representation of objects with edges.

The distribution of selected cases from the MIAS dataset.
2.
 Optimal image reconstruction in severely ill-posed problems.
Class Benign Malignant Total

3.
Microcalcification 12 13 25

Circumscribed mass 19 4 23

Spiculated mass 11 8 19

Ill-defined mass 7 7 14

Architectural distortion 9 10 19

Asymmetry 6 9 15

Normal – – 27

Total 64 51 142
Optimal sparse representation of wave propagators.

Suppose we have a function f which has a discontinuity across a
curve, and which is smooth otherwise, and consider approximating f

from the best m-terms in the expansion. For wavelet transform, the
squared error of such an m-term expansion obeys [13]

Jf�f ~W J2
p

1

m
;m-þ1 ð10Þ

where f ~W is the approximation from m best wavelet coefficients.
While for curvelet transform it is

Jf�f ~C J
2
p

1

m2
ðlogmÞ3;m-þ1 ð11Þ

where f ~C is the approximation from m best curvelet coefficients.
The mean squared error is reduced in curvelet as compared to

wavelet. As shown in Eqs. (10) and (11).
3. Experimental work

The proposed system is built based on multiresolution
representation of the mammogram images by applying wavelet
and curvelet. The largest 100 coefficients from each decomposi-
tion level are used for classification process. A nearest neighbor
classifier based on Euclidian distance is used to classify the
images by calculating the distances between the feature vectors
and class core vectors. This section describes the dataset, feature
extraction and classification method.

3.1. Dataset

In the present study, a set of images provided by the
Mammographic Image Analysis Society (MIAS) [22] is used in
applying the proposed technique. These images were previously
investigated and labeled by an expert radiologist based on
technical experience and biopsy. The dataset is selected due to
the various cases it includes. It is also widely used in similar
research work [4–8,12]. The dataset is composed of 322
mammograms of right and left breast, from 161 patients, where
51 were diagnosed as malignant, 64 as benign and 207 as normal.
The abnormalities are classified into microcalcification, circum-
scribed mass, spiculated mass, ill-defined mass, architectural
distortion, and asymmetry. In this study 142 mammogram images
were selected as described in Table 1.

The original mammograms are 1024�1024 pixels, and almost
50% of the whole image comprised of the background with a lot of
noise. Therefore a cropping operation is applied to the images to
cut off the unwanted portions of the images. Regions of Interest
(ROI’s) 128�128 are cropped. The cropping process was
performed manually, where the given center of the abnormality
area is selected to be the center of ROI. Thus, almost all the
background information and most of the noise are eliminated. By
this method we are sure that no abnormality was suppressed with
the background. An example of cropping that eliminates the label
on the image and the black background is given in Fig. 5. Some
examples to the ROI’s are presented in Fig. 6.

3.2. Feature extraction

Once the images are cropped as described, both wavelet and
curvelet transform methods are applied separately, and the
features vectors are extracted. Features are extracted from the
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ROI based on a multiresolution transform. For wavelet, four
different decomposition levels based on three different wavelet
functions, Daubechies-8 (db8), symlet (sym8) and bi-orthogonal
(bior3.7) are used. The used levels of decomposition and wavelet
functions are selected based on previous work [4,10,11], the
number of decomposition levels used for curvelet transform is 4
based on the work of candes [23].

In each decomposition level, the obtained coefficients are
sorted in descending order. Then, the biggest 100 coefficients are
extracted to represent the corresponding mammogram (i.e.,
feature vector). This means that each mammogram image is
represented by 400 coefficients. Then these coefficients are passed
to classification step.

3.3. Classification method

The Euclidian distance is used to design the nearest neighbor
classifier. The dataset is divided into 5 samples two times, i.e. 2�5-
fold cross validation. Then 10 experiments are performed. In each
experiment a single sample is used to build the classes’ core vectors
and the remaining samples are used to test the model. The
evaluation statistics for each method is then assessed via an average
of 10 experiments followed by t-test statistical significant method.

For each class, the class core vector is calculated as the mean of
set of the class vectors using Eq. (12). For a new mammogram
image to be classified, the feature vector is extracted as discussed
above (the biggest 100 coefficients from each level of decomposi-
tion), and then the distances between this feature vector and the
class core vectors are calculated using Eq. (13). The system
automatically classifies the feature vector in the class for which
the distance obtained is the smallest.

Vi
core ¼

1

N

Xj ¼ N

j ¼ 1

Vi
j ð12Þ

Dist¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i ¼ 1

ðVi
core�Vi

testÞ
2

vuut ð13Þ
Fig. 5. (a) Original image (1024�1024), (b) Cropped image (128�128).

Mdb(1) Mdb(32) Mdb(90) Mdb(115) Mdb(134)

Fig. 6. Sample of the used mammogram images.

Mammogram to Be Classified

New
Mammogram

to Be
Classified

C
urvelet

or
W

avelet

Each Level

4 Levels decomposition

Fig. 7. The proposed multiresolution mammogram diagnosis system.
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where Vi
core is the vector core of the corresponding class, Vj is the

coefficient vector for ROI’s of the corresponding class, i is
the index of the vector, N is the number of images used to
produce the class core vector, Dist is the calculated distance
between the tested image and the class core vector, k is the length
of vector, and Vi

test is the feature vector of mammogram to
be classified. The procedure of the feature extraction and
classification method is summarized in Fig. 7.

The work in the experimental level consists of two different
main functions. The first is to distinguish between three classes
normal tissue, benign and malignant tumors. The second is to
classify between six classes, microcalcification, circumscribed
mass, spiculated mass, ill-defined (misclassified) mass, architec-
tural distortion and asymmetry.
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4. Statistical analysis

In this study, to test whether the classification rates for
curvelet are significantly higher than those of wavelet, a paired
t-test is performed on the results of the 2�5-fold cross validation.
Let mc and mw be respectively the mean accuracies of curvelet and
wavelet. The null hypothesis is that the difference between the
means of the two techniques is zero ðH0 : mc�mw ¼ 0Þ, and the
alternative hypothesis is that the difference is positive
ðHa : mc�mw40Þ. For a trial i of the cross validation, let Pi

w and
Pi

c be respectively the results obtained by using wavelet and
curvelet. The test statistic is computed as follows:

t¼ P :

ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i
ðPi�P Þ2

n�1

r

where P ¼ 1=n
Pn

1 Pi, Pi ¼ Pi
c�Pi

w and n is the number of runs (10
for this experiment) [24]. The P-value is obtained from a
t-distribution table at the degree of freedom (n�1), and is
compared to the critical value 0.05 (i.e. 5% significance level). If
the P-value is smaller than 0.05, the null hypothesis is rejected at
0.05 significance level.
Curvelet Db8 Bior3.7 Sym8
50

Fig. 8. The average of the results obtained for classification of normal, benign and

malignant classes.
5. Results and discussions

In the first step of the work, a tested image has to be classified
as normal tissue, benign or malignant tumor. Table 2 shows the
Table 2
Classification accuracy rates of normal, benign and malignant classes over the 2�5-fo

Method Class Partitions 1

Fold 1 Fold 2 Fold 3 Fold 4 Fold

Curvelet Benign 100.00 86.54 94.23 86.54 100

Malignant 85.37 85.37 87.80 100.00 90

Normal 100.00 100.00 100.00 100.00 90

Average 95.12 90.64 94.01 95.51 93

Db8 Benign 100.00 90.38 84.62 78.85 100

Malignant 85.37 92.68 100.00 87.80 70

Normal 81.82 86.36 100.00 90.91 100

Average 89.06 89.81 94.87 85.85 90

Bior3.7 Benign 65.38 84.62 76.92 76.92 53

Malignant 100.00 100.00 82.93 100.00 100

Normal 81.82 90.91 100.00 100.00 100

Average 82.40 91.84 86.62 92.31 84

Sym8 Benign 100.00 88.46 50.00 76.92 61

Malignant 100.00 100.00 60.98 85.37 100

Normal 68.18 100.00 100.00 100.00 100

Average 89.39 96.15 70.33 87.43 87
successful classification rate of mammogram images with the
overall classification accuracy based on 2�5-fold cross validation.
The average rate for each fold is calculated then the average for
each representation method is calculated. Table 2 illustrated that
the average classification rate achieved for the 3 classes (benign,
malignant and normal) is 94.07% with curvelet coefficients, while
the highest average rate achieved by wavelet functions (db8,
Biro3.7 and sym8) is 90.05%. The average of the accuracy rates
ld.

Partitions 2 Average

5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

.00 73.08 84.62 96.15 88.46 100.00 90.96

.24 100.00 100.00 100.00 100.00 100.00 94.88

.91 77.27 100.00 100.00 100.00 95.45 96.36

.72 83.45 94.87 98.72 96.15 98.48 94.07

.00 61.54 65.38 80.77 96.15 100.00 85.77

.73 100.00 85.37 102.44 82.93 100.00 90.73

.00 100.00 100.00 100.00 100.00 77.27 93.64

.24 87.18 83.58 94.40 93.03 92.42 90.05

.85 65.38 76.92 76.92 80.77 73.08 73.08

.00 85.37 85.37 100.00 100.00 100.00 95.37

.00 68.18 100.00 100.00 100.00 77.27 91.82

.62 72.98 87.43 92.31 93.59 83.45 86.75

.54 63.46 80.77 84.62 100.00 100.00 80.58

.00 85.37 60.98 60.98 82.93 100.00 83.66

.00 81.82 100.00 100.00 100.00 72.73 92.27

.18 76.88 80.58 81.86 94.31 90.91 85.50
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Table 3
Classification accuracy rates of abnormal classes over the 2�5 -fold.

Method Class Partitions 1 Partitions 2 Average

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Curvelet Calc 95.24 85.71 85.71 100.00 100.00 100.00 100.00 100.00 95.24 85.71 94.76

Circ 95.00 85.00 90.00 95.00 95.00 90.00 100.00 95.00 95.00 95.00 93.50

Spic 93.75 93.75 100.00 93.75 87.50 100.00 93.75 93.75 93.75 81.25 93.13

Ill-def 100.00 100.00 100.00 100.00 90.91 100.00 100.00 100.00 100.00 100.00 99.09

Arch 87.50 87.50 93.75 100.00 87.50 81.25 81.25 81.25 93.75 100.00 89.38

Asym 100.00 91.67 100.00 100.00 91.67 75.00 100.00 100.00 100.00 100.00 95.83

Average 95.25 90.61 94.91 98.13 92.10 91.04 95.83 95.00 96.29 93.66 94.28

Db8 Calc 100.00 78.95 100.00 84.21 89.47 100.00 100.00 100.00 73.68 52.63 87.89

Circ 66.67 72.22 66.67 100.00 83.33 83.33 83.33 83.33 100.00 83.33 82.22

Spic 73.33 80.00 66.67 93.33 86.67 60.00 93.33 73.33 73.33 73.33 77.33

Ill-def 90.91 100.00 100.00 90.91 90.91 100.00 100.00 100.00 100.00 100.00 97.27

Arch 73.33 66.67 73.33 100.00 66.67 86.67 100.00 100.00 100.00 73.33 84.00

Asym 100.00 100.00 83.33 83.33 75.00 83.33 83.33 100.00 100.00 100.00 90.83

Average 84.04 82.97 81.67 91.96 82.01 85.56 93.33 92.78 91.17 80.44 86.59

Bior3.7 Calc 63.16 73.68 78.95 78.95 68.42 57.89 84.21 73.68 73.68 73.68 72.63

Circ 77.78 66.67 83.33 72.22 88.89 100.00 100.00 94.44 94.44 94.44 87.22

Spic 73.33 73.33 73.33 66.67 80.00 100.00 53.33 100.00 100.00 100.00 82.00

Ill-def 81.82 81.82 81.82 72.73 90.91 90.91 100.00 100.00 100.00 100.00 90.00

Arch 80.00 53.33 73.33 73.33 66.67 100.00 100.00 100.00 66.67 100.00 81.33

Asym 91.67 100.00 91.67 91.67 83.33 75.00 75.00 75.00 100.00 100.00 88.33

Average 77.96 74.81 80.41 75.93 79.70 87.30 85.42 90.52 89.13 94.69 83.59

Sym8 Calc 100.00 73.68 100.00 100.00 94.74 100.00 100.00 100.00 73.68 52.63 89.47

Circ 100.00 72.22 83.33 72.22 77.78 100.00 83.33 83.33 83.33 83.33 83.89

Spic 66.67 60.00 93.33 66.67 80.00 66.67 73.33 73.33 100.00 100.00 78.00

Ill-def 100.00 81.82 100.00 100.00 90.91 100.00 100.00 100.00 100.00 100.00 97.27

Arch 100.00 80.00 100.00 100.00 73.33 86.67 100.00 100.00 66.67 60.00 86.67

Asym 91.67 100.00 91.67 100.00 83.33 83.33 83.33 83.33 100.00 100.00 91.67

Average 93.06 77.95 94.72 89.82 83.35 89.44 90.00 90.00 87.28 82.66 87.83
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achieved for classification between benign, malignant and normal
is shown in Fig. 8.

For the second step, the classification rates of the abnormal-
ities of 2�5-fold cross validation are listed in Table 3. The average
rate for each fold is calculated then the average for each
representation method is calculated. Table 3 shows that, the
average successful classification rate for all classes is 94.28% by
using curvelet transform coefficients. For wavelet functions (db8,
Biro3.7 and sym8) the highest average rate obtained is 87.83%.
Fig. 9 presents average of classification accuracy rates achieved
for this step of the work.

For both problems considered in this study, the obtained
results suggest that curvelet-based features performs better
that wavelet-based features. This goes in the same line with the
expectations since the curvelet transform is able to capture
multidimensional features in wedges as opposed to points in
wavelet transform. A hypothesis test is performed to evaluate the
significance of the difference between the performances of two
techniques. The results at 5% significance level are summarized in
Table 4. The null hypothesis is rejected at 0.05 significance
level for the two problems and the different wavelets considered.
It means that the classification rates obtained using curvelet
are higher than those obtained using wavelet and the difference
is statistically significant. It is noted that, except for
the first result, all P-values are smaller than 0.01, which
means that the differences are actually statistically highly
significant.
Curvelet Db8 Bior3.7 Sym8
50

Fig. 9. The average of the results obtained for classification of abnormal classes.
6. Conclusion

In this paper, the differences between wavelet- and curvelet-
based methods in digital mammogram analysis and classification
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Table 4
The results of t-test at significance level a=5%.

Function Method T-value P-value Null hypothesis (H0)

Benign, Malignant, Normal Curvelet vs. Db8 2.7806 0.0107 Reject

Curvelet vs. Bior3.7 4.7309 5.3626�10�4 Reject

Curvelet vs. Sym8 3.3420 0.0043 Reject

Abnormal classes Curvelet vs. Db8 5.9521 1.0740�10�4 Reject

Curvelet vs. Bior3.7 4.7495 5.2245�10�4 Reject

Curvelet vs. Sym8 4.8725 4.4021�10�4 Reject

M. Meselhy Eltoukhy et al. / Computers in Biology and Medicine 40 (2010) 384–391 391
are discussed. Firstly, each mammogram image is decomposed using
wavelet and curvelet transforms separately. The 100 biggest
coefficients are extracted from each decomposition level. Then,
Euclidian distance is used to construct a nearest neighbor classifier.
The performance of the classifier is evaluated using a 2�5-fold
cross-validation test. The experimental results show that the
extracted features based on curvelet give a better performance as
compared to wavelet. For classification of normal, benign and
malignant, based on curvelet transform coefficients, the classifier
achieves 94.07%, while the highest rate achieved by wavelet
coefficients is 90.05%. For abnormal classes, the curvelet transform
coefficients make the classifier achieves classification rate of 94.28%
as compared to wavelet functions (db8, Biro3.7 and sym8), for which
the highest rate obtained is 87.83%.

Finally a hypothesis test is performed on the accuracies
obtained from the 2�5-fold cross validation. The results show
that the successful classification rates obtained with curvelet
coefficients are higher than those obtained with wavelets and the
differences are statistically significant.
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